Harmonic Functions on Alexandrov Spaces and Their Applications

نویسنده

  • ANTON PETRUNIN
چکیده

The main result can be stated roughly as follows: Let M be an Alexandrov space, Ω ⊂M an open domain and f : Ω→ R a harmonic function. Then f is Lipschitz on any compact subset of Ω. Using this result I extend proofs of some classical theorems in Riemannian geometry to Alexandrov spaces.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Harmonic Functions of Polynomial Growth on Singular spaces with nonnegative Ricci Curvature

In the present paper, the Liouville theorem and the finite dimension theorem of polynomial growth harmonic functions are proved on Alexandrov spaces with nonnegative Ricci curvature in the sense of Sturm, Lott-Villani and Kuwae-Shioya.

متن کامل

Finite Rank Toeplitz Operators: Some Extensions of D.luecking’s Theorem

The recent theorem by D.Luecking about finite rank Bergman-Toeplitz operators is extended to weights being distributions with compact support and to the spaces of harmonic functions.

متن کامل

On Integral Operator and Argument Estimation of a Novel Subclass of Harmonic Univalent Functions

Abstract. In this paper we define and verify a subclass of harmonic univalent functions involving the argument of complex-value functions of the form f = h + ¯g and investigate some properties of this subclass e.g. necessary and sufficient coefficient bounds, extreme points, distortion bounds and Hadamard product.Abstract. In this paper we define and verify a subclass of harmonic univalent func...

متن کامل

Stability for certain subclasses of harmonic univalent functions

In this paper, the problem of stability for certain subclasses of harmonic univalent functions is investigated. Some lower bounds for the radius of stability of these subclasses are found.

متن کامل

On the Cut Locus in Alexandrov Spaces and Applications to Convex Surfaces

Alexandrov spaces are a large class of metric spaces that includes Hilbert spaces, Riemannian manifolds and convex surfaces. In the framework of Alexandrov spaces, we examine the ambiguous locus of analysis and the cut locus of differential geometry, proving a general bisecting property, showing how small the ambiguous locus must be, and proving that typically the ambiguous locus and a fortiori...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003