Harmonic Functions on Alexandrov Spaces and Their Applications
نویسنده
چکیده
The main result can be stated roughly as follows: Let M be an Alexandrov space, Ω ⊂M an open domain and f : Ω→ R a harmonic function. Then f is Lipschitz on any compact subset of Ω. Using this result I extend proofs of some classical theorems in Riemannian geometry to Alexandrov spaces.
منابع مشابه
Harmonic Functions of Polynomial Growth on Singular spaces with nonnegative Ricci Curvature
In the present paper, the Liouville theorem and the finite dimension theorem of polynomial growth harmonic functions are proved on Alexandrov spaces with nonnegative Ricci curvature in the sense of Sturm, Lott-Villani and Kuwae-Shioya.
متن کاملFinite Rank Toeplitz Operators: Some Extensions of D.luecking’s Theorem
The recent theorem by D.Luecking about finite rank Bergman-Toeplitz operators is extended to weights being distributions with compact support and to the spaces of harmonic functions.
متن کاملOn Integral Operator and Argument Estimation of a Novel Subclass of Harmonic Univalent Functions
Abstract. In this paper we define and verify a subclass of harmonic univalent functions involving the argument of complex-value functions of the form f = h + ¯g and investigate some properties of this subclass e.g. necessary and sufficient coefficient bounds, extreme points, distortion bounds and Hadamard product.Abstract. In this paper we define and verify a subclass of harmonic univalent func...
متن کاملStability for certain subclasses of harmonic univalent functions
In this paper, the problem of stability for certain subclasses of harmonic univalent functions is investigated. Some lower bounds for the radius of stability of these subclasses are found.
متن کاملOn the Cut Locus in Alexandrov Spaces and Applications to Convex Surfaces
Alexandrov spaces are a large class of metric spaces that includes Hilbert spaces, Riemannian manifolds and convex surfaces. In the framework of Alexandrov spaces, we examine the ambiguous locus of analysis and the cut locus of differential geometry, proving a general bisecting property, showing how small the ambiguous locus must be, and proving that typically the ambiguous locus and a fortiori...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003